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Abstract
We analyze chainlike N-soliton dynamics in a weakly nonlocal, essentially
nonintegrable system described by the cubic–quintic nonlinear Schrödinger
equation. Quintic nonlinearity is not assumed to be small. This system is
reduced to a generalized complex Toda chain model. Numerical simulations
demonstrate adverse action of both cubic and quintic nonlocal responses, in
their own right, on the quasi-equidistant train propagation, with a development
of a chaotic regime. From the Toda chain model, we predict a possibility of
mutually compensating both types of nonlocality-induced distortion, restoring
thereby a deterministic mode of the train propagation in a weakly nonlocal
medium. Analytical predictions corroborate well with numerical results.

PACS numbers: 05.45.Yv, 42.65.Tg, 42.81.Dp

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Interactions between solitons (solitary waves) are the key topic to understand the dynamics of
a soliton system. For integrable models, soliton collisions are elastic [1]. A more complicated
but at present well-studied case of weak interactions between N solitons with nearly equal
amplitudes and velocities in these models [2, 3] is reduced to the integrable complex Toda chain
with N nodes [4–11]. Nonintegrable systems which cannot be treated as small perturbations
of the integrable ones do not admit such a simple picture. Moreover, even for two tail–tail
interacting solitons of the generalized nonlinear Schrödinger (NLS) equation, rich fractal
structures in scattering of solitons were revealed [12–16]. It is remarkable that such highly
non-regular dynamics can still be successfully described analytically for an arbitrary algebraic
(local) nonlinearity in the generalized NLS equation [17, 18].

Our paper is aimed at developing an analytical approach to a description of weakly
interacting solitons, arranging into an N-soliton train, in an essentially nonintegrable system.
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It is important that a generalization from two to N solitons is nontrivial because of lack of
the superposition principle for nonlinear dynamical systems. We will not seek for fractals
in the soliton interaction. Our goal is rather opposite—to weaken a manifestation of chaotic
dynamics of the N-soliton train at the cost of a proper choice of the soliton and medium
parameters. The model we shall deal with is the NLS equation with a weakly nonlocal cubic–
quintic (CQ) nonlinearity. Nonlocality plays a significant part in systems where transport
phenomena and finite-range interaction cannot be neglected. A number of new interesting
effects attributed to nonlocal nonlinear response have been discovered in nonlinear optics
[19, 20], liquid crystals [21, 22] and Bose–Einstein condensates [23–25]. As a particular
implementation of our model, pulse propagation in liquid core optical fibers can be mentioned
[26, 27]. In the spatial soliton context, our model describes light beam interaction in media of
the above class.

Weak nonlocality can be reduced to a perturbation of a basic equation [28, 29] which is
nonintegrable in our case because we do not assume smallness of the quintic nonlinearity.
We prove that the N-soliton train dynamics can be described in terms of a generalized
(nonintegrable) complex Toda chain system. We analytically predict a condition to the soliton
and medium parameters that can provide a quasi-equidistant regime of the N-soliton train
propagation even in a nonlocal medium. Numerical simulations of the CQ NLS equation are
found in a very good agreement with predictions made on the basis of the Toda model.

This paper is organized as follows. After formulating a model in section 2, we perform
in section 3 a multiple-scale perturbation procedure for deriving evolution equations for
parameters of the single CQ NLS soliton. Two-soliton interaction is discussed in section 4.
These results are then extended in section 5 to the case of a chainlike N-soliton configuration,
and, as a result, we obtain a generalized complex Toda chain model. Section 6 is devoted to
numerical simulations. We compare the results which follow from the direct integration of
the starting equation, with those found from the Toda model, and prove a good agreement.
Section 7 concludes the paper.

2. Model

A model that describes soliton propagation in a nonlocal CQ nonlinear medium is governed
by the equation

iut +
1

2
uxx + u

∫ +∞

−∞
dx ′ R3(x − x ′)|u(x ′, t)|2 + δu

∫ +∞

−∞
dx ′ R5(x − x ′)|u(x ′, t)|4 = 0. (1)

Here u(x, t) is a complex envelope of the pulse, R3(x) and R5(x) are normalized symmetrical
response functions of the medium associated with the cubic and quintic nonlinearities,
respectively,

∫ +∞
−∞ dxR3,5(x) = 1. For the Gaussian-type nonlocality we have

R3,5 = 1√
πa3,5

exp

(
− x2

a2
3,5

)
, (2)

where the positive parameters a3 and a5 determine a strength of the nonlocal response of the
medium. A similar relation can be written for a more realistic exponential response function
[30, 31]. The real parameter δ measures a contribution of the quintic nonlinearity, with δ > 0
standing for the focusing medium, while δ < 0 corresponds to the defocusing medium. It
should be stressed once again that we do not assume smallness of δ. Equation (1) is studied
numerically in [32], where two types of solitons (fundamental and dipole ones) have been
discovered and their stability was analyzed.
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In the following, we will be interested in the case of weak nonlocality, when the width
of the response function R(x) is finite but small compared to the width of the pulse intensity
distribution. This means that intensities in the integrals in (1) can be decomposed as

|u(x ′)|n = |u(x + (x ′ − x))|n = |u(x)|n + 1
2 (x − x ′)2(|u(x)|n)xx + O((x − x ′)3), n = 2, 4.

As a result, in this approximation (1) takes the form of a perturbed CQ NLS equation,

iut + 1
2uxx + |u|2u + δ|u|4u = −γ3u(|u|2)xx − δγ5u(|u|4)xx, (3)

where the small positive parameters γ3 and γ5 are defined as

γ3,5 = 1

2

∫
dx x2R3,5(x).

The unperturbed CQ NLS equation, i.e., (3) with γ3 = γ5 = 0, admits the exact soliton
solution [33–36] for a defocusing quintic nonlinearity (δ < 0):

u(x, t) = �(y, η)exp (2iVy + iσ) , (4)

where a positive parameter η determines the soliton amplitude, V stands for the soliton velocity
and σ is a phase. More precisely,

�(y, η) = 2η

(
2B

B + cosh(4ηy)

) 1
2

, B =
(

1 +
32

3
η2δ

)− 1
2

,

y = x − 2V t − x0, σ = 2(η2 + V 2)t − σ0,

(5)

and the real function � satisfies the equation
1
2�yy − 2η2� + �3 + δ�5 = 0. (6)

Hence, for δ < 0 we have B > 1 with the natural restriction

1 − 32
3 η2|δ| > 0. (7)

Recently [37] the solution (5) was extended to the focusing quintic nonlinearity, and its stability
was proved.

As we see, the CQ soliton depends on four real parameters: η, V , soliton maximum
position x0 and phase σ0. In what follows, we will also need the expressions for the soliton
power P(η) and the derivative Pη:

P(η) =
∫ +∞

−∞
dy �2(y, η) = 4Bη√

B2 − 1
ln

√
B + 1 +

√
B − 1√

B + 1 − √
B − 1

, δ < 0,

P (η) = 8Bη√
1 − B2

arctan

√
1 − B

1 + B
, δ > 0,

(8)

and in both cases Pη = 4B2.

3. The perturbed CQ NLS equation

We will solve (3) by means of the multiple-scale perturbation theory starting from the
unperturbed CQ NLS equation. Let us write (3) as

iut + 1
2uxx + |u|2u + δ|u|4u = εG(u) (9)

with a small perturbation parameter ε. The function G(u) gives a functional form of the
perturbation. The perturbation induces an evolution of the soliton parameters on the slow time
scale T = εt . We seek for the perturbed soliton solution in the form

u = �̃(y, η, t, T ) eiϕ, ϕ = 2Vy + σ, (10)

3
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where the coordinate y and phase σ are written as

y = x − 2
∫ t

0
dt ′ V − x0, σ = 2

∫ t

0
dt ′(η2 + V 2) − σ0, (11)

and the soliton parameters η(T ), V (T ), x0(T ) and σ0(T ) depend on the slow time T. Inserting
the ansatz (10) into (9) gives

�̃t + 1
2 �̃yy − 2η2�̃ + |�̃|2�̃ + δ|�̃|4�̃

= εGe−iϕ − iε
(
�̃ηηT − �̃yx0T

) − ε
(
2V x0T

− 2VT y + σ0T

)
�̃.

Following the well-known formalism [38–41], we expand �̃ in a series with respect to ε:

�̃ = �(y, η) + εφ + O(ε2).

Evidently, the zero-order term � obeys (6). At order ε we obtain the equation for φ:

φt + 1
2φyy − 2η2φ + �2(1 + δ�2)φ + �2(1 − 2δ�2)(φ + φ∗)

= εGe−iϕ − iε
(
�ηηT − �yx0T

) − ε
(
2V x0T

− 2VT y + σ0T

)
�.

Combining this equation with the complex conjugate one, we arrive at the linear
inhomogeneous equation

i
t + L
 = H, (12)

where


 =
(

ψ1

ψ2

)
=

(
φ + φ∗

φ∗ − φ

)
, L =

(
0 L0

L1 0

)
, H =

(
H1

H2

)
and

L0 = − 1
2∂2

y + 2η2 − �2 − δ�4, L1 = L0 − 2�2(1 − δ�2),

H1 = 2i
[
Im(Ge−iϕ) − �ηηT + �yx0T

]
, (13)

H2 = 2
[−Re(Ge−iϕ) +

(
2V x0T

− 2VT y + σ0T

)
�

]
.

The operator L is self-adjoint and has two eigenfunctions with zero eigenvalues, as well
as two generalized eigenfunctions [38]:

L
j = 0, L
̃j = 
j, j = 1, 2,

where


1 =
(

�y

0

)
, 
2 =

(
0
�

)
, 
̃1 =

(
0

−y�

)
, 
̃2 =

(− (1/4η) �η

0

)
. (14)

To avoid secularity development in solutions to (12) for large time, we should impose the
orthogonality conditions:

〈H,
j 〉 = 〈H, 
̃j 〉 = 0, j = 1, 2. (15)

Here the inner product is defined as

〈F1, F2〉 =
∫ +∞

−∞
dy F

†
1 (y)σ1F2(y),

and σ1 is the Pauli matrix. Accounting for (13) and (14), we derive from (15) the slow
evolution equations for the soliton parameters:

PVT =
∫

dy �y Re(Ge−iϕ), PηηT = 2
∫

dy �η Im(Ge−iϕ),

P x0T
= 2

∫
dy y� Im(Ge−iϕ), Pη

(
V x0T

+
1

2
σ0T

)
=

∫
dy �η Re(Ge−iϕ).

(16)

4
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These equations will be used below to describe dynamics of weakly interacting CQ solitons.
First, we will consider the two-soliton interaction. Then these results will be generalized to N
solitons.

4. Two-soliton interaction

We consider two well-separated tail–tail interacting solitons with the (almost) equal velocities
and amplitudes. The degree of the tail–tail overlapping is measured by a small parameter
ε = e−2η(ξ2−ξ1), where ξ2 − ξ1 � 1 is the intersoliton spacing and η is the mean amplitude
of solitons. As regards the parameters γ3 and γ5, they are supposed to be of the order of

√
ε.

Deviations of the individual soliton amplitudes and velocities from their mean values are also
of the order of

√
ε. Then, neglecting the effects of the order of ε3/2 and smaller, we have the

equation for the j th soliton (j = 1, 2):

iujt + 1
2ujxx + |uj |2uj + δ|uj |4uj = −2|uj |2u3−j − u2

ju
∗
3−j − u2

ju
∗
3−j (17)

− δ
(
3|uj |4u3−j + 2|uj |2u2

ju
∗
3−j

) − γ3uj (|uj |2)xx − γ5δuj (|uj |4)xx.

The right-hand side of (17) represents a perturbation experienced by the j th CQ soliton. Here

uj = �j(yj , ηj ) eiϕj , yj = x − ξj , ϕj = 2Vjyj + σj ,

ξj = 2
∫ t

0
dt ′Vj + x0j , σj = 2

∫ t

0
dt ′

(
η2

j + V 2
j

) − σj0.
(18)

Let us first consider an influence of the second (right) soliton on the first (left) one. It
follows from (17) and (18) that

Re(εG1 e−iϕ1) = −�2
1�2

(
3 + 5�2

1

)
cos ϕ21 − γ3

8η2B
�7

1I3(y1) − γ5δ

2η2B
�9

1I5(y1),

Im(εG1 e−iϕ1) = −�2
1�2

(
1 + δ�2

1

)
sin ϕ21.

Here

ϕ21 = ϕ2 − ϕ1 ≈ −2V ξ21 + σ21, ξ21 = ξ2 − ξ1, σ21 = σ2 − σ1, (19)

and we use in (19) the mean velocity V = 1
2 (V1 + V2) because V1 and V2 are (almost) the

same. Similarly,

y2 = y1 − (ξ2 − ξ1), ξ2 − ξ1 � 1,

and

�2(y2, η2) ≈ 4η
√

B exp [2η(y1 − ξ2 + ξ1)] , B =
(

1 +
32

3
η2δ

)− 1
2

. (20)

The presence of a small factor exp [−2η(ξ2 − ξ1)] in �2 (20) allows us to use once again the
mean amplitude η in B. Finally, the functions I3(y1) and I5(y1) are found from the explicit
form of �1(y1):

I3(y1) = cosh(8ηy1) − 2B cosh(4ηy1) − 3,

I5(y1) = cosh(8ηy1) − B cosh(4ηy1) − 2.
(21)

Substituting the above relations into (16) and taking into account that �(y1) and �η(y1) are
even functions of y1, we obtain (see also [17])

Pηη1t = −64η3Be−2ηξ21 sin ϕ21, PV1t = 64η4Be−2ηξ21 cos ϕ21. (22)

Note the appearance of derivatives in t in (22) due to ε in Re(εG1 e−iϕ1) and Im(εG1 e−iϕ1).
Besides, we use here the mean power P(η).

5
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As regards the evolution equation for x0t , it is sufficient to know that

x0t = O(ε). (23)

This statement will be elucidated below. Lastly, we are left with the equation

Pη(σ01)t = 2
∫

dy1 �η(y1)Re(G1 e−iϕ1),

where we should explicitly calculate the contribution of the terms with γ3 and γ5. Hence,

Pη(σ01)t = 1

4η2
1B

∫ +∞

−∞
dy1 �η(y1)�

7(y1)[γ3I3(y1) + 4γ5δ�
2(y1)I5(y1)] + O(ε). (24)

Calculating the integrals yields

(σ01)t = 4

3
η4

1
B

1 − B2
F(γ3, γ5) + O(ε), (25)

where

F(γ3, γ5) = 48

{
γ3

(
1 − P(η)

4η

)
− 8

15
γ5δ

η2

1 − B2

[
B2(44 + B2) − (14 + 31B2)

P (η)

4η

]}
.

(26)

Repeating the above steps for the second soliton, we find the corresponding evolution
equations:

Pηη2t = 64η3Be−2ηξ21 sin ϕ21, PV2t = −64η4Be−2ηξ21 cos ϕ21,

(x20)t = O(ε), (σ20)t = 4

3
η4

2
B

1 − B2
F(γ3, γ5) + O(ε).

(27)

In the following section we will generalize (22)–(27) to the case of N solitons.

5. N-soliton train interaction and generalized Toda chain

To derive evolution equations for the parameters of the j th soliton incorporated into a chainlike
configuration of N solitons, we should keep in mind that the interaction force between the
solitons is of the order of their overlap. Hence, we take into account only the nearest-
neighbor interaction. As in the case of two solitons, we assume that solitons within the
train have initially equal or nearly equal velocities and amplitudes. Lastly, the overlap
between neighboring solitons is taken to be small. Then, a generalization of the evolution
equations (22)–(27) to the case of N solitons is straightforward. For further convenience we
will use in calculations ξj and σj (18) instead of x0j and σ0j , respectively. As a result, the
evolution equations we are seeking for are written as follows:

Pηηjt = −64η3B
(
e−2ηξj+1,j sin ϕj+1,j − e−2ηξj,j−1 sin ϕj,j−1

)
,

PVjt = 64η4B
(
e−2ηξj+1,j cos ϕj+1,j − e−2ηξj,j−1 cos ϕj,j−1

)
,

ξjt = 2Vj + O(ε), σjt = 2
(
η2

j + V 2
j

) − 4

3
η4

j

B

1 − B2
F(γ3, γ5) + O(ε).

(28)

Here j = 1, . . . , N, ξj,j−1 = ξj − ξj−1, ϕj,j−1 = ϕj − ϕj−1, and we formally put
exp(−2ηξ1,0) = exp(−2ηξN+1,N ) = 0.

Note that it is a change-over from x0j to ξj that justifies the adequacy of the estimation
in (23). Besides, the mean values η and V are constants of motion, as should be. Moreover,
it is seen from the equation for σj that there exists a possibility of mutually compensating

6
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contributions of cubic and quintic nonlocalities at the cost of a proper choice of the parameters
of solitons and medium.

Let us introduce a complex quantity

λj = P

ηPη

Vj − iηj

and denote (P/ηPη) = 1 +α (see also [17]). We will see below that the parameter α measures
a ‘departure from integrability’ of the local CQ NLS equation. Note that we do not consider
α small. Differentiation of λj in t with account for (28) yields

dλj

dt
= 16η3

B
[exp(−2ηξj+1,j + iϕj+1,j ) − exp(−2ηξj,j−1 + iϕj,j−1)]. (29)

In terms of Ej+1,j defined as

Ej+1,j = 2η2

B
exp(−2ηξj+1,j + iϕj+1,j ) = exp

[
−2ηξj+1,j − 2iV ξj+1,j + iσj+1,j + ln

2η2

B

]
(30)

(we use here (19)), we obtain from (29)

dλj

dt
= 8η(Ej+1,j − Ej,j−1). (31)

On the other hand, equations (30) and (28) permit us to write

dEj+1,j

dt
= −4η

[
λj+1 − λj − α(Vj+1 − Vj ) + i

ηB

1 − B2
F(γ3, γ5)(ηj+1 − ηj )

]
Ej+1,j . (32)

In the process of derivation of (32) we used

V 2
j+1 − V 2

j ≈ 2V (Vj+1 − Vj ), η3
j+1 − η3

j ≈ 3η2(ηj+1 − ηj ).

Now we represent Ej+1,j as

Ej+1,j = − exp(qj+1 − qj ). (33)

Then it follows from (32) and (33) that

dqj

dt
= −4η

[
λj − αVj + i

ηB

1 − B2
F(γ3, γ5)ηj

]
. (34)

Finally, combining (31)–(34) and using the normalized time τ = 4
√

2ηt , we obtain a
generalized complex Toda chain model:

d2qj

dτ 2
= eqj+1−qj − eqj −qj−1 − α

1 + α
Re(eqj+1−qj − eqj −qj−1)

− i
ηB

1 − B2
F(γ3, γ5)Im(eqj+1−qj − eqj −qj−1). (35)

As regards the explicit expression for qj , it follows from (30) and (33) that qj has the form

qj = −2i(V − iη)ξj + iσj + j ln(2η2/B) + ijπ + iC(t), (36)

where C(t) is a function to be determined. Differentiating qj (36) in t in virtue of (28) and
comparing the result with (34) yields C(t) = σ(t), where σ(t) is the mean value of phase.
Hence,

qj = −2i(λ − αV )ξj + i(σj + σ) + j ln(2η2/B) + ijπ.

7
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Here λ is the mean value

λ = 1

N

N∑
j=1

λj .

Note that the phase variables σj and σ depend on the nonlocality parameters γ3 and γ5.
Some comments concerning the generalized Toda chain model (35) are quite suitable

here. First, for a local CQ medium (γ3 = γ5 = 0) we are still left with the nonintegrable
Toda model, due to the presence of the quintic-induced term with α. Second, the function qj

(36) is δ-dependent and hence is more general than if we would start with the integrable cubic
NLS equation. Third, we can use predictions made on the basis of the integrable complex
Toda chain model [6, 7] concerning various dynamical regimes of the cubic NLS soliton train
evolution, to estimate a possibility of realizing similar regimes for the CQ NLS solitons in
nonlocal media. This subject is discussed in the following section.

6. Comparison with numerical simulations

Let us recall that we started from the perturbed CQ NLS equation (3) and reduced it to the
generalized Toda chain model (35) (or, equivalently, to the dynamical system (28)). Such
a reduction allows us to predict various dynamical regimes of the N-soliton train evolution,
relying on similar results for the integrable Toda chain [7, 8]. Below we perform a comparison
of our predictions with direct numerical integration of the starting equation (3).

We study evolution of two sorts of the soliton train composed from three and five CQ NLS
solitons, respectively, which propagate in a weakly nonlocal medium. For further references
and to demonstrate our conclusions more informatively, we first consider the soliton train
propagation in a local CQ NLS model (γ3 = γ5 = 0). Motivated by the results on the train
dynamics in the integrable Toda model, we take initial soliton amplitudes in the form

η1 = η + β, η2 = η, η3 = η − β

for three solitons, and

η1 = η, η2 = η + β, η3 = η, η4 = η − β, η5 = η

for five solitons. Here η is the mean amplitude and β is a small deviation from the mean value.
In our simulations we put β = 0.05, δ = ±0.1; the initial separation between adjacent solitons
is ξj −ξj−1 = 8 and initial velocities are taken to be zero. Initial phases of solitons were chosen
to be π -alternating, according to the conditions of the quasi-equidistant soliton propagation
derived in frames of the integrable complex Toda chain model [7, 10]. Figures 1(a) and 2(a)
illustrate comparison of soliton trajectories ξj obtained by solving the dynamical system (28)
(dashed lines) with solitons’ tracks obtained numerically from the CQ NLS equation (3). The
agreement is impressive.

Note a crucial role of the initial amplitude mismatch for the stabilization of the soliton
train (a fact well known for the NLS solitons). Almost equidistant propagation of solitons was
observed only in the case of the nonzero mismatch whose value was more than eight percent
of the mean amplitude. The results turned out to be valid for both signs of δ due to the chosen
value of the amplitude mismatch.

In order to elucidate the influence of cubic and quintic nonlocalities on the train dynamics,
we integrated (3) separately for γ3 	= 0 and γ5 = 0 (cubic nonlocality contribution only) and
γ3 = 0 and γ5 	= 0 (quintic nonlocality contribution only). As it follows from figures 1(b)
and 2(b), cubic nonlocality tends to destabilize the train, though for five solitons this effect
is less pronounced. In the case of quintic nonlocality we observe a much more dramatic

8
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(d )(c)

(a) (b)

Figure 1. Dynamics of the three-soliton train: (a) quasi-equidistant propagation in a local CQ
medium (γ3 = γ5 = 0), dashed lines correspond to the trajectories ξ1, ξ2 and ξ3 obtained
from equations (28), thick lines are solitons’ tracks calculated from (3); (b) disturbed quasi-
equidistant propagation in a medium with only cubic nonlocality (γ3 = 0.015, γ5 = 0); (c) chaotic
disintegration of solitons in a medium with only quintic nonlocality (γ3 = 0, γ5 = 0.05);
(d) restoration of the quasi-equidistant regime for nonlocality parameters obeying the condition
(37) (γ3 = 0.015, γ5 = 0.05). Initial configuration on all plots: β = 0.05, η = √

2/3, V1 = V2 =
V3 = 0, ϕ2,1 = ϕ3,2 = π, ξj − ξj−1 = 8, δ = −0.1.

soliton behavior (figures 1(c) and 2(c)). Defocusing quintic nonlocality leads very quickly
to chaotic disintegration of solitons and their eventual decay. Such a situation manifests the
nonintegrable origin of the model under consideration and seems quite natural after discovering
fractal structures in two weakly interacting soliton systems [17].

Despite the fact that both cubic and quintic nonlocalities, treated separately, disturb
the quasi-equidistant soliton train propagation, there exists a unique possibility of mutually
compensating adverse effects of nonlocalities. Indeed, we can restore a practically
deterministic regime displayed in figures 1(a) and 2(a) under the definite relation between
the soliton and medium parameters. It follows from (28) and (35) that such a compensation is
accomplished if the function F(γ3, γ5) (26) vanishes, or, equivalently, if the condition

γ3 = �(η, δ)γ5 (37)

takes place, where

�(η, δ) = 8

15

δη2

1 − B2

4ηB2(44 + B2) − (14 + 31B2)P (η)

4η − P(η)
. (38)
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(a) (b)

(d )(c)

Figure 2. Dynamics of the five-soliton train: (a) quasi-equidistant propagation in a local CQ
medium (γ3 = γ5 = 0), dashed lines correspond to the trajectories ξj , j = 1, . . . , 5, obtained
from equations (28), thick lines are solitons’ tracks calculated from (3); (b) slightly disturbed
quasi-equidistant propagation in a medium with only cubic nonlocality (γ3 = 0.0244, γ5 = 0);
(c) chaotic disintegration of solitons in a medium with only quintic nonlocality (γ3 = 0, γ5 =
0.06); (d) restoration of the quasi-equidistant regime for nonlocality parameters obeying the
condition (37) (γ3 = 0.0244, γ5 = 0.06). Initial configuration on all plots: β = 0.05, η = 1/

√
2,

Vj = 0, ϕj,j−1 = π, ξj − ξj−1 = 8, δ = −0.1.

Here the soliton power P(η) is given by (8). Note that for the Gaussian response function (2)
equation (37) can be rewritten in terms of nonlocality parameters a3,5 as follows:

a3 =
√

�(η, δ)a5.

Taking into account that γ3 and γ5 are positive, we have the restriction � > 0. Figure 3
shows the profile of the function � for the focusing quintic nonlinearity (δ > 0). We observe
that � is negative for any allowable choice of the parameters η and δ. Hence, the distortion
compensation cannot be achieved in the case of the focusing quintic nonlinearity. At the same
time, figure 4 shows that for negative values of δ there exists a region in the parameter space
(δ, η) where � > 0 and a compensation of CQ nonlocalities can occur.

This prediction obtained from the generalized Toda system was checked by numerical
simulation of (3) for defocusing quintic nonlinearity. Results are presented in figures 1(d)
and 2(d). Here the dashed lines which show the solitons’ trajectories calculated from
equations (28) are compared with the solitons’ tracks obtained by numerical integration of (3)
for γ3 and γ5 obeying the condition (37). We see a good agreement between analytical and
numerical results.

10
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Figure 3. The profile of the � function for δ > 0. � is negative for allowable soliton and medium
parameters.

Figure 4. The profile of the � function for δ < 0. The dashed area corresponds to the parameters’
sets (δ, η) for which (7) violates and CQ solitons do not exist. There exists a domain of the
parameters where � is positive, and cubic and quintic nonlocalities can be mutually compensated.

To investigate the effect of a departure from the exact relation (37), we fixed initial
parameters and the soliton configuration (we put δ = −0.1, η = 1/

√
2 and γ5 = 0.05) and

varied �. Very good compensation was observed within the interval (1 ± 0.08)�0, where �0

is calculated according to (38) for the chosen parameters’ set. Outside this interval, for � < �0,
chaotic behavior was detected. Increase of the contribution of the cubic nonlocality (� > �0)

remedies the train dynamics by superseding disintegration with relatively stable propagation
with enhanced variations of solitons peak amplitudes.

7. Conclusion

We have analyzed chainlike N-soliton dynamics in an essentially nonintegrable system
governed by the CQ NLS equation. Using the multiple-scale perturbation approach, we have
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found evolution of soliton parameters on the slow time scale and reduced the above system to
a generalized complex Toda chain model. Numerical simulations of the weakly nonlocal
CQ NLS equation demonstrated that nonlocal responses can disturb a quasi-equidistant
mode of the soliton train propagation. Moreover, a defocusing quintic nonlocality can
drastically change soliton behavior leading to a quick development of chaotic disintegration of
solitons.

From the Toda chain equation, we were able to predict a possibility of weakening chaotic
manifestation in the soliton train dynamics, to the extent that a practically deterministic regime
of the train propagation in a nonlocal medium can be restored. It should be stressed that such
a restoration is achieved in a medium with the defocusing quintic nonlinearity only. Results
of numerical integration of the CQ NLS equation are in a very good agreement with those
derived from the Toda chain model.

We have studied a particular (cubic–quintic) type of nonlinearity. Such a choice is not
too restrictive. Taking into account the results of [17], any local and, as it follows from our
paper, any weakly nonlocal nonlinearity in the NLS-type equation will give the same evolution
equations for the soliton parameters V , η and ξj , as in equation (28). The only place where
the specific type of nonlinearity can be exhibited is the equation for the soliton phase σj .
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